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A pseudo-spectral algorithm is presented for the solution of the rotating Green–Naghdi
shallow water equations in two spatial dimensions. The equations are first written in vor-
ticity–divergence form, in order to exploit the fact that time-derivatives then appear
implicitly in the divergence equation only. A nonlinear equation must then be solved at
each time-step in order to determine the divergence tendency. The nonlinear equation is
solved by means of a simultaneous iteration in spectral space to determine each Fourier
component. The key to the rapid convergence of the iteration is the use of a good initial
guess for the divergence tendency, which is obtained from polynomial extrapolation of
the solution obtained at previous time-levels. The algorithm is therefore best suited to
be used with a standard multi-step time-stepping scheme (e.g. leap-frog).

Two test cases are presented to validate the algorithm for initial value problems on a
square periodic domain. The first test is to verify cnoidal wave speeds in one-dimension
against analytical results. The second test is to ensure that the Miles–Salmon potential vor-
ticity is advected as a parcel-wise conserved tracer throughout the nonlinear evolution of a
perturbed jet subject to shear instability. The algorithm is demonstrated to perform well in
each test. The resulting numerical model is expected to be of use in identifying paradig-
matic behavior in mesoscale flows in the atmosphere and ocean in which both vortical,
nonlinear and dispersive effects are important.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Green–Naghdi (GN) shallow water equations [14,28] describe the evolution of a thin layer of fluid under gravity. They
differ from the usual shallow water set by an additional term in the momentum equation, to be introduced below, which acts
as a short wave dispersion. The dispersive term acts to regularize the shallow water equations, by inhibiting the well-known
steepening and breaking of shallow water gravity waves [30]. While not permitting wave-breaking, the GN equations sup-
port traveling solitary wave solutions [21], and the GN set in fact reduces to the Korteweg–de Vries equation in the small
amplitude limit, under the assumption of uni-directional wave propagation. The exact form of the additional dispersive term
that appears in the momentum equations can be found by a standard expansion of the Euler equations in the aspect ratio
parameter, and then retaining all terms up to fourth order [14], as opposed to keeping just those terms up to second order
as in the derivation of the shallow water equations.
. All rights reserved.
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Our interest in the GN equations derives from their potential as paradigmatic equations in geophysical fluid dynamics.
Miles and Salmon [23] discovered that the GN set can be derived following application of Hamilton’s principle to a particular
approximation to the Lagrangian of the Euler equations for the evolution of a single layer of fluid with a free surface. The
importance of this discovery stems from the fact that the symmetries of the Lagrangian are preserved under Miles and Sal-
mon’s approximation, and consequently the GN equations retain conservation properties analogous to those of the full Euler
equations [23]. Of particular relevance to geophysical fluid dynamics is that there exists a GN potential vorticity (PV here-
after) that is conserved following fluid particles, meaning that many of the insights due to ‘potential vorticity thinking’ [19]
can be carried across into a system that also supports nonlinear solitary waves. The two-dimensional GN equations, which
are easily extended to include the effects of rotation [2,6], may well be the simplest set of hydrodynamic equations that re-
tain a physically meaningful representation of both vorticity dynamics and finite amplitude nonlinear wave behavior. The
focus in atmosphere and ocean fluid dynamics is increasingly on mesoscale and sub-mesoscale phenomena where both ef-
fects may be important, and for example, the GN set has been used to study flow over topography [26]. The two-layer analog
of the GN equations [4] has been used to investigate tidal generation at an ocean ridge and internal solitary wave propaga-
tion [16–18]. Further applications of the GN equations include naval hydrodymanics [9–11], the dynamics of the solar tacho-
cline [5] and of bubbly liquids [13].

The above references suggest that fast numerical algorithms to solve the GN equations may be of use in several fields. The
challenge in solving the equations stems from the fact that both the leading order time-derivatives and their spatial deriv-
atives appear in nonlinear terms in the equations. Previous authors [7,8,26] have obtained numerical solutions in one-
dimension using a finite difference discretization (although note that the algorithm of [26] as presented allows for solution
in two-dimensions). In one-dimension the implicit equation for the time-derivatives can be discretized as a tridiagonal ma-
trix equation which must be inverted at each time-step. A similar approach can be used in two-dimensions [9–11], but the
matrix necessarily becomes banded, making its inversion and storage expensive as resolution increases. Additionally, naive
finite difference methods are known to be relatively diffusive with respect to the parcel-wise conservation of PV described
above. Recently,2 Le Métayer et al. [22] have formulated a finite volume (Godunov-type) algorithm. The scheme invokes a
non-local change of variables in order to remove the nonlinear terms involving time-derivatives in favor of a nonlinear ellip-
tic equation for the velocity field which must be solved at each time-step. Several test cases are presented including solitary
wave propagation tests similar to those presented below. Detailed comparison between the present scheme and that of Le
Métayer et al. awaits a future study.

Our aim here, then, is to develop a new pseudo-spectral algorithm for the two-dimensional GN equations. In the first in-
stance we aim to solve the equations on a doubly-periodic square domain, but the algorithm should be straightforward to
generalize to any domain and boundary conditions compatible with pseudo-spectral methods. In Section 2, the GN equations
are introduced and re-written in vorticity–divergence form. In Section 3, the pseudo-spectral algorithm is described, and its
implementation is discussed. Section 4 describes the first test-case for the resulting numerical model which tests the GN
cnoidal wave speeds (in one-dimension). Section 5 describes the second test-case which is a test of parcel-wise PV conser-
vation, which is validated by comparison with a passive tracer, initialized with the same distribution as the PV, and advected
by an identical velocity field. Finally, in Section 6 conclusions are presented.

2. The Green–Naghdi equations

2.1. Non-dimensionalization and vorticity–divergence form

The GN equations [14] describe a shallow layer of fluid of local depth r(x, t) moving with a (layer-average) horizontal
velocity u(x, t) under the effect of gravity, over underlying topography. It is assumed here, for simplicity, that the fluid flows
over a flat horizontal bottom. Details of how the algorithm can be adapted in the case of non-zero topography are relegated
to Appendix A. The rotating GN equations can then be written
2 Pub
Duþ f k� uþ grr ¼ � 1
3r
r r2D2r
� �

;

Drþ rr � u ¼ 0;
where k is the vertical unit vector, the fluid is rotating at rate f/2, g is the gravitational constant and D is the advective deriv-
ative defined by
D � @

@t
þ u � r:
Non-dimensionalizing these equations, we set
u ¼ U u�; t ¼ L
U

t�; r ¼ Hr�; r ¼ 1
L
r�; ð1Þ
lished after the original submission of this article.
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where L is a horizontal length scale, U is a horizontal velocity scale, H is the undisturbed layer depth and time is scaled with
L/U. Dropping asterisks, we obtain
Duþ k� u
�
þrr

F2 ¼ �
m

3r
r r2D2r
� �

; ð2aÞ

Drþ rr � u ¼ 0; ð2bÞ
where the square of the aspect ratio m, the Froude number F, and the Rossby number �, are defined by
m ¼ H2

L2 ; F ¼ Uffiffiffiffiffiffi
gH

p ; � ¼ U
fL
:

Due to the simple form of the Laplacian operator in spectral space and the absence of implicit time dependence in the GN
vorticity equation, the GN equations are more amenable to numerical solution in their vorticity–divergence form. The oper-
ators r� and k � r� are therefore applied to (2a) to obtain
dt ¼
f
�
�r2 r

F2

� �
�r � m

3r
rðr2D2rÞ þ ðu � rÞu

� �
;

ft ¼ �
d
�
�r � ðufÞ � k � r � m

3rrðr
2D2rÞ

� �
;

rt ¼ �r � ðruÞ;

ð3Þ
where d =r � u is the divergence and f = k � r � u is the vorticity of the flow. Following standard vector calculus manipula-
tions, and using the mass conservation equation (Dr = �rd) to simplify the dispersive terms, (3) becomes
dt ¼ k � r � u fþ ��1� �� �
�r2 r

F2 þ
u � u

2
� mr

3
DðrdÞ

� �
þr � m

3
rrDðrdÞ

� �
� jr4d; ð4aÞ

ft ¼ �r � ðuðfþ ��1ÞÞ þ k � r � m
3
rrDðrdÞ

� �
� jr4f; ð4bÞ

rt ¼ �r � ðruÞ � jr4r; ð4cÞ
where
DðrdÞ ¼ rðdt þ ðu � rÞd� d2Þ:
In common with previous pseudo-spectral algorithms for the shallow water equations, if turbulent flows are to be sim-
ulated, some form of diffusion is necessary to absorb the down-scale cascade in enstrophy. Here, a fourth order hyperdiffu-
sion term �jr4 is added to the tendency of the vorticity, divergence and height fields (see also the further discussion in
Section 3.3).
2.2. The Green–Naghdi potential vorticity

It is well-known [23] that there exists a PV, QGN = QSW + Q*, associated with the GN Eqs. (2a) and (2b) that is conserved
following fluid parcels
DQGN ¼ 0: ð5Þ
Here, QSW is the usual non-dispersive shallow water PV
QSW ¼
fþ ��1

r
;

and Q* is a ‘pseudo potential vorticity’ given by
Q � ¼ m
3r

k � ðrðDrÞ � rrÞ: ð6Þ
The Green–Naghdi PV will be central to our second numerical test-case described in Section 5.



J.D. Pearce, J.G. Esler / Journal of Computational Physics 229 (2010) 7594–7608 7597
3. The Green–Naghdi numerical scheme

3.1. The GN equations in spectral space

The appearance of dt in (4d) as well as in the right-hand sides of (4a) and (4b) means that at any instant in time (4a) must
be treated as a nonlinear PDE in (x,y), to be solved for dt. It is therefore convenient to separate the D(rd) terms in (4a) and
(4b) into two parts-one involving dt and one not. It proves convenient to define vector quantities
E ¼ uðfþ ��1Þ; G ¼ mrrr
3
½ðu � rÞd� d2�; H ¼ mrdtrr

3
; L ¼ ru;
and scalar quantities
T ¼ �u � u
2
� r

F2 þ
mr2

3
ðu � rÞd� d2	 


; W ¼ mdt

3
ðr2 � 1Þ:
Neglecting the hyperdiffusion terms (see Section 3.3), Eqs. (4a)–(4c) can then be written as
1� m
3
r2

� �
dt �r2W �r �H ¼ k � r � Eþr2T þr � G;

ft ¼ �r � Eþ k � r � ðGþHÞ;
rt ¼ �r � L:

ð7Þ
In order to permit the semi-implicit treatment of linear dispersive terms to be described below, a term �mr2(dt)/3 has
been grouped with the linear (first) term in the divergence equation of (7). This operation collects terms which are linear
in dt, relative to a mean reference state at rest with r = 1, into a single linear term in (7), and is motivated by the differing
treatments of linear and nonlinear terms to be described below. This grouping of the linear dispersive terms proves essential
in obtaining fast convergence of the iteration to be described. The remaining terms on the left side of the divergence equation
are those nonlinear terms which include the divergence tendency dt.

The set (7) can be used as a starting point to adapt the algorithm presented below for any regular two-dimensional do-
main (e.g. cylindrical, annular, spherical etc.). Here, however, the focus will be on the case of a square (2p � 2p) doubly-peri-
odic domain with isotropic resolution (although of course only minor adjustments are required for a rectangular domain of
arbitrary length and width and variable resolution in the x and y directions). The prognostic variables r, d, f are expanded in
the usual discrete Fourier transform
rðx; yÞ ¼
XN=2

m¼0

XN�1

n¼0

r̂mn expfiðmxþ nyÞg þ c:c:; etc:
with the real variables being taken to be defined on a regular N � N grid. The fast Fourier transform algorithm is used, and is
maximally exploited by choosing N to be a power of two (e.g. [3]). Defining
M ¼ �i � Eþ j � G N ¼ i � Gþ j � E;
P ¼ j �H Q ¼ i �H;
R ¼ i � L S ¼ j � L;

ð8Þ
where i and j are the unit vectors in the x and y directions, (7) may be written in terms of spectral coefficients as
ð bdt Þmn þ
imcQmn þ in bPmn þ ðm2 þ n2ÞcWmn

1þ m
3 ðm2 þ n2Þ ¼ � imcN mn þ indMmn þ ðm2 þ n2ÞcT mn

1þ m
3 ðm2 þ n2Þ ; ð9Þ
with
ðbft Þmn ¼ �imð bPmn þdMmnÞ þ inðcN mn þcQmnÞ; ð10Þ
ðcrt Þmn ¼ imcRmn þ inbSmn: ð11Þ
The set (9)–(11) is suitable for the time-stepping scheme to be described next.
3.2. Time-stepping and the damped iterative scheme

Time-stepping in the numerical model can be formulated following any explicit multi-step method. Here, a centered-time
differencing leap-frog scheme is chosen. Time-stepping takes place in spectral space with the time-step Dt constrained by
the Courant–Friedrichs–Lewy (CFL) stability criterion,
Co ¼
UDt
Dx

< 1: ð12Þ
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Here, Co is the Courant number, given in terms of Dt, the grid-spacing Dx and U the maximum flow speed in the domain.
In practise, selecting Dt to maintain C0 � 0.5, was found to be adequate for stability. The spectral coefficients of the prognos-
tic variables at time level ts+1, where ts = t0 + sDt, are given by
d̂sþ1
mn ¼ d̂s�1

mn þ 2DtðbdtÞsmn; ð13Þ
with analogous equations for f̂sþ1
mn and r̂sþ1

mn . Following [15], time-stepping is initiated by a forward Euler time-step of Dt/2,
followed by a centered leap-frog time-step of Dt, and then proceeds with centered time-steps of 2Dt. We note in passing that
algorithms using leap-frog time-stepping often require the use of a Robert–Asselin filter [1,27] time filter to control the com-
putational mode. No such filter is required here, most likely because the necessary filtering occurs due to the iteration to be
described next.

In order to time-step Eqs. (9)–(11) it is necessary to obtain the divergence tendency at the sth time level Ds
mn � ð bdt Þsmn

from (9). At a given time level (9) can be regarded as a system of nonlinear equations in Ds
mn, of the form
Ds
mn � F s

mnðD
sÞ ¼ X s

mn; ð14Þ
where Ds is the matrix with components Ds
mn (with m 2 [0,N/2] and n 2 [0,N � 1]), and F s

mn and X s
mn correspond to the terms

written as fractions on the left and right sides of (9), respectively. Eq. (14) must be solved iteratively at each time-step to
obtain Ds

mn before the divergence equation can be updated using (13).
A damped fixed point iterative scheme is used to solve (14) (the O(N2) dimension of the problem makes naive calculation

of the Jacobian for use in Newton-type methods prohibitively expensive). Denoting the dth guess at time level s by the super-
script (d,s) the following iteration is used to obtain converged updates for Ds

mn, with each iteration being applied to all spec-
tral coefficients (values of m and n) simultaneously,
Dð0;sÞmn ¼
2 d̂s

mn � d̂s�1
mn

� �
Dt

�Ds�1
mn ;

Dðdþ1;sÞ
mn ¼ c F s

mnðD
ðd;sÞÞ þ X s

mn

� �
þ ð1� cÞDðd;sÞmn ; d P 0: ð15Þ
The first guess Dð0;sÞmn exploits the multi-step method by making a direct linear extrapolation based on the known tenden-
cies at earlier time-levels. The additional accuracy in the first guess due to the extrapolation is found to significantly reduce
the number of subsequent iterations necessary for convergence (for certain flows by an order of magnitude or more). The
parameter c controls the relaxation rate of the iteration. This damping constant is left as a free parameter whose optimum
value is determined numerically, as discussed in Section 4.3. The iteration is continued until the convergence criterion
Maxm;n Dðd;sÞmn � FmnðDðd;sÞÞ � X s
mn

��� ���
Maxm;njDðd;sÞmn j

< dc; ð16Þ
is satisfied, with the numerical parameter chosen in the results below to be dc = 10�10.
The iteration is applied simultaneously to all wavenumbers rendering it computationally efficient. The spectral coeffi-

cients of M;N ;R;S and T need only be calculated once per time-step at the beginning of the iteration as they do not in-
volve Dmn. The spectral coefficients of P;Q and W, which are required to calculate F s

mnðD
sÞ are re-calculated in real space at

each step of the iteration using the new guess for Ds
mn, by utilising the fast Fourier transform routine.
3.3. Spectral blocking and the addition of hyperdiffusion terms

The use of spectral methods in the numerical solution of nonlinear partial differential equations can lead to the well-
known phenomenon of ‘spectral blocking’, as discussed in, for example, Boyd [3]. The phenomenon occurs when nonlinear
transfer of enstrophy E, defined by E ¼ 1

2 f2, in spectral space leads to a build-up of enstrophy at high wavenumbers near the
truncation limit which cannot then move to sub-grid scales. The result is a gradual, but eventually catastrophic, build-up of
numerical noise at the grid-scale. Spectral blocking often occurs in numerical simulation of turbulent geophysical flows, as
discussed by Vallis [29].

The problem of spectral blocking is typically handled (e.g. [20]) by the application of a hyperdiffusion operator to damp
the highest spectral modes. Following this approach, hyperdiffusion terms parameterizing sub-grid scale mixing are in-
cluded in the right-hand sides of the evolution Eqs. (4a)–(4c). The hyperdiffusion terms in Eqs. (4a)–(4c) are �jr4d, �jr4f
and �jr4r, respectively, where j is a hyperdiffusion constant. The hyperdiffusion terms are not included in the initial cal-
culation of the tendencies of the prognostic variables, but are added implicitly to the time-stepping so that (13) is modified
to become
d̂sþ1
mn ¼ d̂s�1

mn þ 2Dt ð bdt Þsmn � jðm2 þ n2Þ2 d̂sþ1
mn þ d̂s�1

mn

2

 !" #
: ð17Þ
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Solving for d̂sþ1
mn the updated spectral coefficients for the divergence are then given by
Table 1
The tab
cDiff = 8

Four

64
128
256
d̂sþ1
mn ¼

ð1� jDtðm2 þ n2Þ2Þ d̂s�1
mn þ 2Dtð bdt Þsmn

1þ jDtðm2 þ n2Þ2
; ð18Þ
with similar expressions for the vorticity and height spectral coefficients, f̂sþ1
mn and r̂sþ1

mn . The diffusion constant j scales with
(Dx)2 where Dx is the grid-spacing, so that
j ¼ cDiff ðDxÞ2;
cDiff is a constant independent of resolution. The value of cDiff is set to 8 � 10�3 which was found empirically to be the lowest
value at which the hyperdiffusion prevented spectral blocking. The corresponding values of j for the different resolutions
used are shown in Table 1.

3.4. Recovering the horizontal velocities

Once the spectral coefficients d̂mn; f̂mn and r̂mn have been obtained at the new timelevel, the horizontal velocities u and v,
required for the evaluation of M;N ;R;S and T during the next time-step, are recovered by a standard technique used in
shallow water pseudo-spectral methods. To obtain u and v, the streamfunction w and velocity potential v defined by
r2w ¼ f; r2v ¼ d;
are introduced so that the horizontal velocities may be expressed as
u ¼ vx � wy; v ¼ wx þ vy:
The spectral coefficients ŵmn and v̂mn may then be obtained by applying the inverse Laplacian operator to f̂mn and d̂mn in
spectral space (for all spectral coefficients except the m = 0, n = 0 coefficient) so that the velocity spectral coefficients are gi-
ven by
ûmn ¼
im

ðm2 þ n2Þ d̂mn �
in

ðm2 þ n2Þ f̂mn; v̂mn ¼
im

ðm2 þ n2Þ f̂mn þ
in

ðm2 þ n2Þ d̂mn; ð19Þ
from which u and v on the grid can be obtained by the inverse Fourier transform.

3.5. The dispersive and diffusive length scales

The addition of hyperdiffusion terms to the evolution Eqs. (4a)–(4c) implies that the solution of the GN equations will be
smoothed below a certain length scale. To legitimately claim to be resolving dispersive effects associated with the GN equa-
tions, the dispersive length scale must be substantially greater than the diffusive length scale associated with the added
hyperdiffusion terms. Linearizing (2a) and (2b) in one horizontal direction and assuming plane wave solutions, the GN linear
dispersion relation is given in terms of frequency x and wavenumber k by
x ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

=3
q :
The maximum value of jx0 0(k)j occurs at kDisp ¼
ffiffi
3
p

2 � 1, where kDisp can be defined as the characteristic dispersive wave-
number. The requirement that the diffusive length scale is much smaller than the dispersive length scale may therefore be
stated as kDiff	 1, where kDiff is the characteristic diffusive wavenumber. By considering the effect of the hyperdiffusion
terms on the tendencies of the prognostic variables in the absence of other terms, kDiff may be defined. In this case, the diver-
gence evolution equation reduces to
dt ¼ �jr4d;
and similarly for the vorticity and height equations. Considering wave-like solutions to this equation, whose wavenumber is
defined to be the characteristic diffusive wavenumber, yields
kDiff ¼ j�1=4:
Table 1 shows the values of kDiff for the three different resolutions used. Even for the lowest resolution, the condition kDiff	 1
is satisfied, legitimizing the addition of hyperdiffusion terms to the GN equations to prevent spectral blocking.
le shows the diffusion constant j and the characteristic dispersive wavenumber kDiff for three different resolutions on a 2p � 2p domain with
� 10�3.

ier modes Grid points Dt j kDiff

128 0.03 1.93 � 10�5 15.1
256 0.015 4.82 � 10�6 21.3
512 0.0075 1.21 � 10�6 30.1
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4. Test-case 1: Green–Naghdi cnoidal waves

4.1. Cnoidal wave solutions

The steadily propagating cnoidal wave solutions of the GN equations are well-known [7]. Considering (2a) and (2b) in one
horizontal direction and searching for steadily propagating non-rotating (��1 = 0) solutions such that F = 1 using the ansatz
u = u(x � ct) and r = r(x � ct) where c is the wavespeed, it follows that
� cux þ uux þ rx ¼
m

3r
@

@x
r2ðu� cÞ @

@x
ðuxrÞ

� �
u ¼ c 1� 1

r

� �
:

ð20Þ
It is assumed in what follows that the undisturbed fluid layer depth is unity. Eliminating u from (20) yields a third order
ordinary differential equation which, after some manipulation, may be integrated twice to obtain the cnoidal wave equation
m
6
r2

x ¼ �
r3

2c2 þ
C2r2

3c2 �
C1r
3c2 þ

1
2
; ð21Þ
where C1 and C2 are constants of integration. Eq. (21) has solutions of the form
rðxÞ ¼ aþ bcn2½axjm�; ð22Þ
where cn[�] is a Jacobi elliptic function and where the two relations
a2 ¼ 3b
4mmc2 ;

c2 ¼ a3 þ a2b 2� 1
m

� �
þ ab2 1� 1

m

� �
;

ð23Þ
between the parameters a, b, m and a may be obtained from the substitution of (22) into (21) and the setting of the coef-
ficients of the resulting cubic equation to zero. The requirement that the layer of fluid has an undisturbed depth of unity
provides a relation between a and b. We require that the integral of (22) over one wavelength is unity. Since the wavenumber
of the GN cnoidal waves is given by
k ¼ pa
K½m� ; ð24Þ
this integral may be written as
a ¼ 1� ba
2K½m�

Z K½m�=a

�K½m�=a
cn2½axjm�dx; ð25Þ
where K[m] is the complete elliptic integral of the first kind. Using the identity
Z
cn2½axjm�dx � x� x

m
þ 1

a
E am½axjm�jm½ � cn2½axjm� þ 1

m� 1
� �

dn½axjm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msn2½axjm�

p !
;

where E[zjm] is the incomplete elliptic integral of the second kind and am, dn and sn are standard Jacobi elliptic functions,
the definite integral in (25) may be evaluated to obtain
a ¼ 1� b 1þ E½m� � K½m�
mK½m�

� �
; ð26Þ
where E[m] is the complete elliptic integral of the second kind. Notice that a drops out of (25) when the integration takes
place and (26) is an expression for a in terms of only b and m. Setting m = 1, the two parameters b and m may therefore
be used to specify the amplitude and steepness, respectively of the cnoidal waves.

4.2. Assessment of GN cnoidal wavespeeds

In Section 4.1, it was demonstrated that the non-rotating GN equations support steadily propagating one-dimensional
cnoidal waves. The first test of the numerical model is whether these waves propagate steadily at the velocity c given by
(23). Since the domain is assumed to have length 2p and has periodic boundary conditions, we must impose a further con-
straint that the cnoidal wavelength is 2p. The GN cnoidal wavelength is given by 2K[m]/a, where K[m] is the complete elliptic
integral of the first kind. Therefore, m and b must satisfy the condition
K½m� ¼ aðm; bÞp; ð27Þ
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where the parameter m is set to unity. We may then choose m to be our one free parameter with b determined by (27). The
numerical model is tested with the two cnoidal waves defined by

– STEEP: m = 0.99, c = 0.87800631912.
– SUPERSTEEP: m = 0.99999, c = 0.81034076434.

The height field r and velocity field u of these two waves are shown in Fig. 1. The chosen values of m result in near sol-
itary, cnoidal waves which exhibit large trough-crest asymmetry. The intention here is not to model physically realistic
waves but to ensure that the partial differential Eqs. (4a)–(4c) are solved accurately by the numerical model where nonlin-
earity is strong. The phase speeds at which the two waves propagate are given analytically by (23). The phase speed of a
wave in the numerical model may be measured by considering the coefficient of the first Fourier mode of the spectrally
transformed r field. This coefficient is r̂01 and is initially at a maximum since the r(x) field is initially chosen to be an even
function. The numerically calculated value of c, cnum, is obtained from the value of r̂01 at some later time, tn, using
Fig. 1.
dashed
cnum ¼
iK½m�
aptn

ln
r̂ðt¼tnÞ

01

r̂ðt¼0Þ
01

 !
; ð28Þ
where use has been made of the expression for the GN cnoidal wavenumber (24).
The algorithm was run without hyperdiffusion for one non-dimensional time unit at three different resolutions, corre-

sponding to 64, 128 and 256 Fourier modes in each dimension in the spectral transform. At each resolution cnum was ob-
tained using (28) with tn = 1 and the relative error �mm

c calculated using the analytical value of c. The results are shown in
Table 2. The values of cnum calculated from the numerical model are correct to a high accuracy and converge quadratically
towards the analytical value as the resolution is increased. The test was repeated with the wave propagating in the y-direc-
tion and the same results were obtained.
4.3. Optimizing the iteration damping coefficient

Several further tests were carried out to examine the robustness of the algorithm. As mentioned previously, the emphasis
here is on demonstrating the efficiency of the algorithm at solving the partial differential equations which form the GN set
rather than simulating flows of physical relevance. Extreme wave steepening where, in places, jrrjP 1 is therefore consid-
ered despite the fact that the GN equations are unlikely to be physically valid for such steep gradients in the free surface.

For a given flow and fixed time-step Dt, there is, in general, a maximum value of the iteration damping constant c above
which the iteration does not converge. Below this maximum is some optimum value copt for which the total number of iter-
ations is a minimum. Reducing c below copt increases the number of iterations.

In the absence of an analytical framework to study the dependence of copt on the type of flow, the GN cnoidal wave family
provides a useful testbed for the examination of the optimum value of copt. As shown in Table 2, copt must be reduced (i.e. the
damping increased) for the SUPERSTEEP wave. Similar behavior has been found for a wide class of flows, i.e. the steeper the
free surface the stronger the damping required. To demonstrate this observation quantitatively copt was found numerically
for six GN cnoidal waves of wavelength 2p. Two of the six waves are the two shown in Fig. 1 and described in Table 2 which
were used to test the cnoidal wavespeeds in Section 4.2. Table 3 shows the values of m for all six waves along with the
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Table 2
Table showing the relative error, �mm

c , on the numerically calculated values of c at the three different resolutions corresponding to 256, 128 and 64 Fourier
modes in both directions in the spectral transform. The value of cnum is obtained using tn = 1 in (28). The initial height and velocity fields for the STEEP
[SUPERSTEEP] waves are shown by the dashed [solid] lines in Fig. 1.

Fourier modes Grid points Dt cnum �mm
c �64

c =�mm
c

STEEP (m = 0.99, c = 0.87800631912, c = 0.4)
64 128 0.001 0.87800651056 2.180 � 10�7 1.0
128 256 0.0005 0.87800636710 5.465 � 10�8 4.0
256 512 0.00025 0.87800633114 1.369 � 10�8 15.9

SUPERSTEEP (m = 0.99999, c = 0.81034076434, c = 0.07)
64 128 0.001 0.81034190086 1.403 � 10�6 1.0
128 256 0.0005 0.81034105035 3.529 � 10�7 4.0
256 512 0.00025 0.81034083588 8.827 � 10�8 15.9

Table 3
The table shows the optimum value of the iteration damping constant copt and the
average number of iterations niter for six GN cnoidal waves of wavelength 2p and
maximum steepness jrrjmax. The results were obtained at a resolution of 64 � 64 Fourier
modes for a time-step Dt = 0.001. No dissipation was added to the GN equations.

m jrrjmax copt niter

0.9 0.40 0.75 9
0.99 1.28 0.43 27
0.999 2.81 0.23 77
0.9995 3.40 0.19 102
0.99995 5.83 0.10 265
0.99999 7.92 0.08 410
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maximum steepness3 of the waves, jrrjmax, the optimum value of the iteration damping constant copt and the average number
of iteration taken niter. The results were obtained at a resolution of 64 � 64 Fourier modes for a constant time-step Dt = 0.001.
No dissipation was added to the GN equations by setting j = 0. In Fig. 2, the variation of copt and niter with jrrjmax is shown. The
figure shows the data points corresponding to the six GN cnoidal waves in Table 3. These points are fitted with an exponential
function in the case of copt and an algebraic function in the case of niter. Further details about these functions are given in the
caption of Fig. 2. Fig. 2 indicates that doubling the maximum steepness of the GN cnoidal wave solution roughly triples the total
number of iterations required. The implication for the algorithm is obvious – the numerical model can cope with solutions of the
GN equations with a strong gradient in the free surface and velocity fields, but at the price of a substantially longer running
time.

The effect on copt and niter of increasing the spatial resolution was also investigated using the cnoidal waves of Table 3. It
was found that the value of copt did not change appreciably with resolution. However, a fall in niter of around 20% was ob-
served with a doubling of resolution. For the flows examined in the subsequent chapters, the left-hand panel of Fig. 2 pro-
vides a useful indication for what value of c is appropriate given the maximum steepness of the initial height field. Of course,
Fig. 2 can be treated as only a rough guide to more complex or two-dimensional flows. The addition of dissipation to the GN
equations will affect copt and niter somewhat.

In the series of nonlinear integrations of two-dimensional flows presented in Section 5 below, the scaling of copt with
jrrjmax shown in Fig. 2 was found to remain a useful guide to the optimal choice of c. Finally, it should be noted that niter

is a function of the time-step Dt as well as the damping constant c. The possibility that niter is reduced at small time-steps Dt
has also been considered. The time-step was, however, held constant in the numerical investigations of this section. The
maximum value of the time-step is dictated by the CFL criterion (12). It may be reduced, leading to a reduction in niter,
but an increase in the number of time-steps required. It was found, however, that the code performed with optimum effi-
ciency when Dt was close to the value specified by the CFL criterion.
5. Test-case 2: GN potential vorticity conservation

The parcel-wise conservation of QGN (see Section 2.2) presents a straightforward method of testing the accuracy of the full
GN numerical model for complex vortical flows. To ensure that the dispersive terms in the GN equations are tested it is cru-
cial that, during the flow, Q* is large enough that QGN differs appreciably from QSW. It is also preferable to test a flow which
develops so that QGN varies in a complicated way in both horizontal directions. The roll-up of the PV field of a barotropically-
3 Note that, the relevant measure of wave steepness is the physical non-dimensional slope of the wave, i.e. here jrrj since m is set equal to unity, but m1/2jrrj
for cases where a different value of the aspect ratio is taken.
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Fig. 2. The figure shows the variation in the optimum value of the iteration damping constant copt and the average number of iterations niter with the
maximum steepness of the GN cnoidal waves jrrjmax. The crosses mark the data points corresponding to the six cnoidal waves in Table 3 for a resolution of
64 � 64 Fourier modes. The data points are fitted with an exponential function of the form copt ¼ a1ajrrjmax

2 þ a3 on the left-hand plot and a algebraic
function of the form niter ¼ a4ðjrrjmaxÞ

a5 þ a6 on the right-hand plot. The constants ai were found using a gradient-expansion least-squares method and are
given by a1 = 0.856, a2 = 0.516, a3 = 0.085, a4 = 14.7, a5 = 1.61 and a6 = 3.27. The results obtained at resolutions corresponding to 128 � 128 Fourier modes
(diamonds) and 256 � 256 Fourier modes (triangles) are shown in the right-hand panel. In the left-hand panel there was no appreciable change in the
positions of the points with resolution No dissipation was added to the GN equations.
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unstable jet is therefore an ideal scenario in which to test QGN conservation. The evolution of a barotropically-unstable jet
was presented as a useful test-case for numerical models of the shallow water equations on a sphere by Galewsky et al.
[12]. Here, a similar test-case is proposed for the GN extended shallow water set. The existence of a conserved GN PV fol-
lowing the flow is central to the test.

A steady solution of the GN Eqs. (2a) and (2b) representing a barotropic jet in geostrophic balance may be specified ana-
lytically by
Fig. 3.
� = 1.0.
uðyÞ ¼ sech2ðyÞ � u0; ð29aÞ
vðyÞ ¼ 0; ð29bÞ

rðyÞ ¼ F2

�
u0y� tanhðyÞð Þ þ 1; ð29cÞ
where the constant u0 is given by
u0 ¼
tanhðpÞ

p
;

-3 -2 -1 0 1 2 3

Distance, y/L

0.0

0.5

1.0

1.5

H
ei

gh
t, 

σ

-3 -2 -1 0 1 2 3

Distance, y/L

-0.5

0.0

0.5

1.0

Ve
lo

ci
ty

, u
 

-3 -2 -1 0 1 2 3

Distance, y/L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
te

nt
ia

l V
or

tic
ity

The layer depth r(y) the velocity u(y) and the GN potential vorticity QGN(y) fields for the jet initial conditions defined by (29a)–(29c) with F = 1.0,



7604 J.D. Pearce, J.G. Esler / Journal of Computational Physics 229 (2010) 7594–7608
to ensure that the mean u field is zero. The flow initially has zero divergence and the dispersive terms in (4a)–(4c) are zero.
Eqs. (29a)–(29c) therefore satisfy the non-dispersive shallow water geostrophic balance condition
Fig. 4.
resolut
c = 0.80
been m
ry ¼ �
F2

�
u; ð30Þ
and the initial flow is therefore a steady solution of the GN Eqs. (4a)–(4c). The mean layer depth is unity and the parameter
F2/� in (29c) controls the steepness of the height of the fluid layer in the initial conditions.

The initial jet is barotropically unstable. A small perturbation,
r0 ¼ rpe�ðx=apÞ2�ðy=bpÞ2 ;
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where
Fig. 5.
differen
with F =
rp ¼ 0:01; ap ¼
p
5
; bp ¼

p
5
;

is added to the height field in (29c) to initiate the development of the barotropic instability. For the test-case explored here,
the parameters F, � and m are set to unity in order that the free surface, rotational and dispersive terms are comparable.

A fixed value of the iteration damping coefficient c is used for the integration. The optimum value of the iteration damp-
ing constant copt found by repeating the numerical experiment, was copt � 0.80. From (30), the maximum initial height gra-
dient is jrrjmax = u0 � 0.32, in excellent agreement with the left-hand panel of Fig. 2 and providing further evidence that this
figure is a useful guide to setting the value of c even for scenarios well-removed from the steadily propagating cnoidal waves
of Section 4.3. To model the ensuing turbulent flow in two horizontal dimensions, it is necessary to add hyperdiffusion, as
discussed in Section 3.3.

The parcel-wise conservation of the GN PV may be tested by obtaining QGN from the prognostic variables and comparing the
time evolution of QGN to that of a tracer, Gtrac , whose value is obtained by numerically integrating the tracer advection equation
Gtrac
t ¼ �u � rGtrac � jr4Gtrac; ð31Þ
simultaneously with the GN equations in the numerical model. Eq. (31) is solved using a standard pseudo-spectral method
following similar steps to those described for the GN equations in Section 3. The initial tracer field is set equal to the initial
GN PV field, Gtracðx;0Þ ¼ Q GNðx;0Þ, and as the hyperdiffusion acts only at scales near the grid-scale, it is expected that at larger
scales the evolution of QGN will closely resemble that of Gtrac . The magnitude of the difference between these two fields is
therefore a measure of the accuracy of the numerical code. A separate, but related issue, is to ensure that it is the full
Green–Naghdi PV QGN that is conserved during the integration, as distinct from the SWE PV QSW. A second test is therefore
to ensure that the relative magnitude of the pseudo-potential vorticity Q* (given by (6)), which is zero initially, becomes
appreciable during the integration, thus ensuring that the dispersive terms of the GN equations are simulated correctly.

To address the above issues it is useful to introduce the two diagnostics,
S1ðtÞ ¼ log10

R
D rjQGN � Q SW jd

2xR
D rQ GNd2x

 !
;

S2ðtÞ ¼ log10

R
D rjQGN � Gtracjd2xR

D rQGNd2x

 !
;

where
R

D indicates integration over the entire domain. The diagnostic S1 is a measure of the magnitude of the ‘dispersive’ part
of the GN PV. The diagnostic S2 is a measure of the relative magnitude of the difference between the GN PV and the tracer.

Fig. 3 shows the initial (basic state) profiles r(y), u(y) and QGN(y) of the barotropic jet. Initially Q* = 0, so that QGN = QSW.
Fig. 4 shows snapshots of the subsequent time evolution of the tracer Gtrac (left column), the GN PV QGN (middle column) and
the difference (right column, magnified by factor indicated). A model run at resolution of 256 � 256 Fourier modes is used,
with j as given in Table 1. Four different times are shown, spanning the early (near-linear) and later (nonlinear) stages of the
development of the barotropic instability. The contours of Gtrac and QGN are identical to the eye, even out to times when the
development of the jet is clearly highly nonlinear. The difference field in the right column are dominated at all times by
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features near the grid-scale concentrated on the jet core where hyperdiffusive tendencies are largest, confirming that QGN is
accurately conserved by the algorithm except for the effects of the hyperdiffusion. This result is to be expected as hyperdif-
fusion acts indirectly on QGN through the r, d and f fields, but acts directly on Gtrac .

To demonstrate that the ‘dispersive’ part of the PV Q* is significant and that it is indeed QGN rather than QSW which is con-
served, the time evolution of the diagnostics S1 and S2 is shown in Fig. 5. The figure shows that S1 is always around two orders
of magnitude greater than S2. Clearly, QGN is conserved more accurately, by two orders of magnitude, than QSW. Notably, Fig. 5
shows S1 undergoing a rapid increase from zero at t = 0 to a value close to �4 immediately afterwards. The rapid increase in
S1 is due to the rapid ‘geostrophic adjustment’ of the small Gaussian perturbation in surface height that was added to ini-
tialise the instability. Inertia-gravity waves are radiated from the perturbation on the inertial timescale (1 time unit on
Fig. 5). As the inertia-gravity waves propagate away, QGN is conserved following fluid parcels, but exchange takes place be-
tween its two components QSW and Q*.

6. Conclusions

A new pseudo-spectral algorithm for the two-dimensional, rotating GN equations has been described. The numerical
solutions presented include accurate simulations of both nonlinear solitary (strictly, cnoidal) waves and accurate parcel-wise
conservation of the Miles–Salmon GN PV. The relative efficiency of the algorithm relative to a comparable pseudo-spectral
algorithm for the shallow water equations is found to depend on typical values of the free surface slope. The free surface
slope controls the convergence of an iteration in spectral space to find the divergence tendency, and for problems of interest
that are within the range of validity of the GN approximation, the iteration is typically found to converge to an acceptable
precision with 10 or fewer steps, independently of model resolution.

The GN equations are arguably the simplest hydrodynamic model having a realistic description of both nonlinear water
waves and vortical dynamics. It is therefore intended that the new algorithm and the resulting numerical model will be of
use to atmospheric scientists and oceanographers interested in exploring physical phenomena where both effects are impor-
tant, for example, the generation of solitary waves at ocean ridges in a turbulent flow. More general questions, concerning
the overall extent of the interaction between solitary waves and vortices, may also be answered.

Recent developments in the solution of the rotating shallow water equations [24,25] have focused on separating as far
as possible the ‘wave-like’ (hyperbolic) and ‘vortical’ (elliptic) aspects of the problem. Following a transformation to a suit-
able set of prognostic variables, one of which is the PV, the system can be expressed as a pair of wave equations together
with an advection equation for the PV. For a wide range of parameter settings, once the PV is associated with a ‘balanced’
velocity and height field, defined in terms of a suitable inversion operator acting on the PV field itself, the wave equations
and PV advection equation are known to be only very weakly coupled. The advantages of such an approach are almost
self-evident; separate and appropriate numerical methods can be used to tackle the wave equations and the PV advec-
tion/operator inversion components of the problem. The disadvantage of these methods is that the PV inversion operator
is generally nonlinear and must be solved iteratively. A future extension of the present algorithm for the GN equations
might involve solving the nonlinear iteration necessary to obtain the divergence tendency (or its analog under the variable
transformation) in parallel with, and using similar algorithms to, the spectral PV inversion operation described in [24].
Such a development, whilst technically detailed, might allow the advantages of [24] approach to be adapted to the GN
equations at little additional cost.
Appendix A. The numerical model of the Green–Naghdi equations with topography

In the presence of bottom topography the rotating GN equations are given in vector form by
Duþ f k� uþ grðrþ bÞ ¼ � 1
r
r r2 D2b

2
� DðrdÞ

3

" # !
�rb D2b� DðrdÞ

2

� 

;

Drþ rd ¼ 0;
where the function b(x) defines the bottom topography. Using the non-dimensionalization defined by (1) and also scaling the
topography with the height so that b = Hb*, we obtain (dropping asterisks)
Duþ k� u
�
þrðrþ bÞ

F2 ¼ � m
r
r r2 D2b

2
� DðrdÞ

3

" # !
� mrb D2b� DðrdÞ

2

� 

;

Drþ rd ¼ 0:

ðA:1Þ
Applying the operators r� and k � r� to (A.1) and using the fact that
1
rr r2 D2b

2
� DðrdÞ

3

" # !
¼ r r

D2b
2
� DðrdÞ

3

" # !
þrr

D2b
2
� DðrdÞ

3

" #
;
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the equations may be recast in vorticity–divergence form
dt ¼ k � r � ðuðfþ ��1ÞÞ � r2 rþ b

F2 þ u � u
2
þ mr D2b

2
� DðrdÞ

3

" # !

�r � mrr D2b
2
� DðrdÞ

3

" #
þ mrb D2b� DðrdÞ

2

� 
 !
;

ft ¼ �r � ðuðfþ ��1ÞÞ � k � r � mrr D2b
2
� DðrdÞ

3

" #
þ mrb D2b� DðrdÞ

2

� 
 !
;

rt ¼ �r � ðruÞ:
The second order advective derivative D2b may be written in vector form as
D2b ¼ ut � rbþ u � ðu � rÞrbþ ðrb � rÞuþrb� ðr� uÞ½ �;
introducing ut into the equations. In Section 3, it was demonstrated that the GN equations could be solved in the absence of
topography by using the divergence equation to iterate towards the correct value of dt at each time-step. The appearance of
ut in the equations in the presence of topography means that there are now two unknown quantities in the divergence equa-
tion. We nevertheless proceed with an iteration to find dt in the same manner as in the case of zero topography in Section 3
and use the values of ut from the previous time-step. This approach is justified by the fact that a small error on one of the
relatively small dispersive terms is negligible in its effect on the value of dt obtained by the iteration. Following a similar
course to Section 3, we split the terms in the GN equations into those involving dt and those not by defining
E ¼ uðfþ ��1Þ;

G ¼ �mrr D2b
2
þ rd2 � rðu � rÞd

3

" #
� mrb D2bþ rd2 � rðu � rÞd

2

" #
;

H ¼ mrdt
rb
2
þrr

3

� �
;

L ¼ ru;

T ¼ �u � u
2
� rþ b

F2 � mr D2b
2
þ rd2 � rðu � rÞd

3

" #
;

W ¼ mdt

3
ðr2 � 1Þ;
so that, (9)–(11) are satisfied by T and W, as defined above, and N ;Q;P, M;R and S, as defined by (8), using the new
expressions for E, G, H and L above. From (11) onwards explanation of the numerical scheme with topography then proceeds
in exactly the same way as for the zero topography case in Section 3 with the new expressions for E, G, H; L;T and W above
being assumed.
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